
Timetabling RIA in action

Florent Devin and Yannick Le Nir
L@RIS - EISTI

26 avenue des lilas
64062 Pau Cedex 9

FRANCE

Abstract

We present an Rich Internet Application to create timetabling
for real engineering school. In this application, we have re-
sources and constraints. Resources describe the timetable’s
context. Constraints are restrictions of resources. All lec-
tures are placed on a timetable composed of time-slots. For
timetabling, we use a computational web service written in
Prolog. Our application presents two different views, one for
the user, and one for theadmin.
Users can view all generated timetables and put in their own
constraints. The input of constraints can be done by two
ways, directly from our application, or via Google calendar.
To use Google calendar, users have to update the link of their
Google calendar.
Admin has many tasks to do. He has to plan all different
lectures that occur in a year. He also has to specify which
contributors teach which lecture, and to whom the lecture is
being given. Moreover, he has to input constraints for classes,
and possibly rooms’ unavailability. Then he has to validate
or invalidate users constraints. Finally he can generate one or
more timetables. He can also export all generated timetables
to Google calendar.

Introduction
In this paper we present an original approach to timetabling.
This approach is based on the concept of web services. To
be able to create timetables, there are two different parts in
our application. One is the Rich Internet Application (RIA),
and the other is the computational part. Before viewing how
our application runs, we have to define several terms. Then
we explain why we have chosen to create an RIA. Finally,
we describe the demonstration itself.

Definitions
First we have to definetime-slot and timetable. For us a
time-slot is a period with a start time and a fixed duration.
So a time slot is the minimal time interval we can find on a
timetable. A timetable is a consecutive list of time-slots on
which resources are planned.

Then we have to defineresources describing the context
of our application. In fact, we consider three resources:

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• main resources: elements to plan (lectures, meetings, . . . );

• static resources: elements which are linked to main re-
sources (contributors, classes, . . . );

• dynamic resources: elements to include during the com-
putation (rooms, materials, . . . ).

Finally we have to defineavailability of resources. This
is all the possible associations between resources and the
amount of consecutive time-slots.Unavailability is the com-
plementary ofavailability in the timetable. Unavailability
can also called aconstraint.

Rich Internet Application
Rich Internet Application provides a very viable technol-
ogy (Duhl 2003), offering most desktop features. This tech-
nology can address many users, without any requirement,
because they are run on a web browser. By using a web
browser, users do not have to learned either a particular oper-
ating system, or a particular software to use our application1

(Rogowski 2007), (Driver and Rogowski 2007).
Our application is written with the ZK framework. ZK

is an open source Ajax web application framework (Seiler
2009). Yeh(2006) shows numerous advantages of using this
framework. Also ZK uses a centric server approach, which
simplifies the security of the application, and saves time dur-
ing the coding phase. Thus our application is written with
Java, and we can use Hibernates’ tools.

CSP and Prolog
Constraint Satisfaction Problem can efficiently model the
timetabling problem (Wallace 1996), (Frühwirth and Abden-
nadher 2003), (Jaffar and Maher 1994), (Carter and Laporte
1998). We can translate the timetabling problem with a CSP
on finite domain. The implementation of the computation
is written with Prolog. It communicates with the RIA us-
ing web services, and also directly with our database using
a classic ODBC.

Application’s architecture
Before describing our demonstration, we now introduce the
general architecture of our application. The central point,
for users, is the RIA. This RIA communicates with other

1Except our application

2



Figure 1: General architecture system

applications using web services. Currently, we have three
web services:

• Identification process: as our application is used by our
contributors, we have to include it in the existing IT sys-
tem. When someone tries to log into our application, we
ask the LDAP2 system if the user is authorizes to access
our IT system, via a web service.

• Computation process: the computation process is written
in Prolog. The RIA is written in Java. In order to commu-
nicate with each other, RIA and Prolog have to interact.
For the communication from the RIA to the Prolog part,
we use a web service.

• Constraints process: we can use Google calendar to input
constraints as the demonstration will show. Using Google
services is like using web services.

To store data, we use a database. This database is a
MySQL database. The RIA create/retrieve/update or delete
data with the help of Hibernate. The Prolog part, as men-
tioned above, uses a classical ODBC.

Timetabling RIA in action
Our demonstration will show the two different views of the
application, the one for users, and the one for the admin. In
this demonstration, you will see a lot of timetables. You will
note that the timetable has many colored time-slots. In fact,
there is one color for one feature’s classroom.

User demonstration
User can view all previously generated timetables, as timeta-
bles are public3 information. There are three different views
for timetables, one for contributor, one for class, and one for
classroom. A user can also modify his personal data, like a
link to his own Google calendar. He can also put unavail-
ability. A screen is dedicated to this function. In this screen,

2LDAP stands for Lightweight Directory Access Protocol
3By public, we mean that all contributors can be informed of

other timetables.

he can see all previously input constraints. He can also view
the state of the constraint, that is to say if the constraint has
been validated, or invalidated by the admin. User can do
nothing more.

Admin demonstration
The most important part of our demonstration is for the ad-
min’s functions. The admin have many tasks to do:

• generation of timetables;

• constraint keyboarding/checking;

• lectures planning function;

• lectures adjustment;

• contributors lectures association.

At the very beginning we have to create the classes, and
moreover the subgroups in each class. For example, as you
can see in the video, the class named “ING 1” is divided into
two subgroups, namedA andB. Doing this, we also specify
the size of each group, this will be useful later when we want
to create the timetable to consider a room’s size and group’s
size.

We may, also at the very beginning, define all existing
classroom. A classroom is defined by its location, features
and size. This step is essential as the computation considers
room’s size and feature to plan a course.

Then we have to specify which lectures can occur for
which class. Which means that we have to name the lec-
ture, and associate the class with it. Over the years this step
does not have to be repeated, as lectures for a year do not
often change.

Then we have to plan in advance the lectures that occur
during a year, a term, or a period. This phase is shown
on the third admin’s video. By planning the lecture in ad-
vance, we also specify the number of theoretical courses per
week, and also the number of practical courses per week.
At the same time, we also indicate the duration of courses
(per week). The difference between theoretical courses and
practical courses is that theoretical courses are done for the
entire class once, and practical courses are done once for
each subclass.

Once this is done, we can associate the contributors, as
shown also on the third video. We do not create contributors,
as we can synchronize the contributors via our LDAP ser-
vices. The only thing to do is to synchronize our database.
Once our database is updated, we can indicate which con-
tributor teach which courses, and also what is the feature
they need.

With this data, we can generate a valid timetable, if
contributor does not have any constraints. To generate a
timetable, we just have to choose the week, or a starting
week and an ending week, and ask for computation. This
can take time, about 20 seconds for a week. And you will
note that using a web service is totally appropriate. During
this step we can also ask for the export to Google calendar.
If we ask for it, all the generated timetables will be exported.
The export is done for all contributors, classes, classrooms
calendar. If contributors have their own calendar, we have
control the other calendars. These can be shared to offer

3



a complete view of the timetable for students, contributors,
and administration.

There is also a screen for changing a lecture in duration
for a particular week. We can also change the number of
courses for a week. For instance, if we have planned a lec-
ture occurring once a week both for theoretical and practice,
we can assume that for a particular week, there is no practi-
cal course, but the theoretical course is longer. If we are in
this case, or whatever similar case, we will use this screen.

We can also deal with constraints. To do this, there are
two screens, one more textual (as is shown on the user’s
video), and one more graphical (as is shown on the second
admin’s video).

As shown on the first admin’s video, we can put in an ex-
ceptional event. This event will be considered by the com-
putational part as a hard constraint.

All this functionality, user and admin, will be shown
during the demonstration, except the configuration phase.
The configuration phase is the keyboarding of contributors,
the naming of lectures, and the specification of rooms and
classes. If the audience wants, we can show this phase too.

Conclusion
We present an RIA for timetabling, which is fully functional.
This RIA uses web services to timetabling. It is important to
note that the workload of the admin is considerably reduced
by using our application rather than handwriting timetables.
We have paid a particular attention to simplifying the ad-
min’s works. Also this application can evolve by the use
of other web services. We also consider users’ habits, by
providing a way to use their own calendar.

References
Abbas, A., and Tsang, E. 2001. Constraint-based
timetabling-a case study.Computer systems and applica-
tions, ACS/IEEE international conference on 0:0067.

Abdennadher, S.; Aly, M.; and Edward, M. 2007.
Constraint-based timetabling system for the german uni-
versity in cairo. InINAP/WLP, 69–81.

Carter, M. W., and Laporte, G. 1998. Recent developments
in practical course timetabling. InPATAT ’97: Selected pa-
pers from the second international conference on practice
and theory of automated timetabling II, 3–19. London, UK:
Springer-Verlag.

Driver, E., and Rogowski, R. 2007. Rias bring people-
centered design to information workplaces. Forester Re-
search.

Duhl, J. 2003. White paper : rich internet application. IDC.

Frühwirth, T., and Abdennadher, S. 2003.Essentials of
constraint programming. Springer Verlag.

Jaffar, J., and Maher, M. J. 1994. Constraint logic pro-
gramming: a survey.J. Log. Program. 19/20:503–581.

Qu, R.; Burke, E. K.; Mccollum, B.; Merlot, L.; and Lee,
S. Y. 2009. A survey of search methodologies and auto-
mated system development for examination timetabling.J.
of scheduling 12:55–89.

Rogowski, R. 2007. The business case for rich internet
application. Forrester Research.
Seiler, D. 2009. Ria with zk. InJAZOON09.
Wallace, M. 1996. Practical applications of constraint pro-
gramming.Constraints 1:139–168.
Yeh, T. M. 2006. Zk ajax but non javascript.

4


