Conformant Planners: Approximation vs. Representation

Son Thanh To, Dang-Vien Tran, Hoang-Khoi Nguyen, Tran Cao Son, Enrico Pontelli
Knowledge representation, Logic, and Advanced Programming Laboratory
Computer Science Department
New Mexico State University
Las Cruces, NM 88003

Abstract

This demonstration presents three conformant planners:
CPA, DNF, and CNF, whose performances are comparable
to those of state-of-the-art conformant planners. All three are
best-first search and progression-based planners. CPA, a rep-
resentative of approximation-based planners, was the recip-
ient of the Best Non-Observable Non-Deterministic Planner
Award at IPC-2008. DNF and CNF are complete planners
which employ different representations for belief states and
perform better than CPA in several domains. DNF uses DNF-
formulae which are minimal with respect to set inclusion,
while CNF uses CNF-formulae which are minimal with re-
spect to subsumption. The key difference between these two
planners and CPA lies in that they implement an algorithm for
guaranteeing completeness of the planner only when needed,
while CPA does so before the search for a plan starts. The
heuristics employed by the three aforementioned planners are
combinations of two well-know heuristics used in conformant
planning: the size of the belief state and the number of satis-
fied subgoals. The demonstration also presents various tech-
niques that contribute to the performance and scalability of
these planners. Lessons learned during the development of
these planners are discussed.

Introduction

Conformant planners deal with planning problems with un-
certainty about the initial states. The following issues are
key to the development of a conformant planner:

e A formalization of actions in presence of incomplete in-

formation; and

o A belief state representation and a good heuristic function.
The first item is important for the correctness of the plan-
ner, as it provides the theoretical foundations for the planner
to progress in the presence of incomplete information. The
second item is critical to the performance and scalability of
the planner, since the complexity of the problem of comput-
ing the successor belief state is, in general, computationally
expensive.

In this demonstration, we introduce three conformant
planners, CPA, DNF, and CNF. These planners employ dif-
ferent approaches to searching for a solutions. CPA searches
for a solution in the space of sets of partial states instead

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

25

of the space of belief states (Son et al. 2005). CPA uses
DNF-formulae to represent a set of partial states and em-
ploys several techniques to reduce the size of the initial be-
lief state. CPA was the recipient of the Best Non-Observable
Non-Deterministic Planner Award at IPC-2008. The excep-
tional performance of CPA led us to study the impact of the
belief state representation on the performance of complete
conformant planners. This investigation resulted in the de-
velopment of two planners, DNF and CNF, which use DNF-
and CNF-formulae, respectively, in encoding belief states.

We begin with a short review of the background of con-
formant planning. We then discuss the basic concepts used
in the development of the planners. Afterwards, we describe
the organization of the systems.

Background: Conformant Planning

A planning problem is described by a tuple P =
(F,0,1,G), where F is a set of propositions, O is a set of
actions, I describes the initial state of the world, and G de-
scribes the goal. A literal is either a proposition p € F or its
negation —p. ¢ denotes the complement of a literal /—i.e.,
{ = =, where ~—p = p for p € F. For a set of literals L,
L = {{| ¢ € L}. A conjunction of literals is often viewed
as the set of its literals.

A set of literals X is consistent if there exists no p € F'
such that {p, 7p} C X. A set of literals X is complete if for
eachp € F, {p,—p} N X # 0. A state s is a consistent and
complete set of literals. A belief state is a set of states.

Each action a in O is associated with a precondition ¢
(denoted by pre(a)) and a set of conditional effects of the
form 1) — £ (also denoted by a : 1» — {), where ¢ and ¥
are sets of literals and £ is a literal.

A state s satisfies a literal ¢, denoted by s |= ¢, if £ € s.
s satisfies a conjunction of literals X, denoted by s = X, if
it satisfies every literal belonging to X. The satisfaction of
a formula in a state is defined in the usual way. Likewise,
a belief state S satisfies a literal ¢, denoted by S | ¢, if
s |= £ for every s € S. S satisfies a conjunction of literals
X, denoted by S = X, if s = X forevery s € S.

Given a state s, an action a is executable in s if s |=
pre(a). The effect of executing a in s is

e(a,s) ={l[3a:¢ —L).s =9}

The transition function, denoted by ®, in the planning do-



main of P is defined by
s = pre(a)

s\e(a,s)Uela,s

®(a,s) = { J_\ () e s) otherwise M
where L denotes a fail state. _

® is extended to define ®, a transition function which
maps sequences of actions and belief states to belief states
for reasoning about the effects of plans. Let S be a be-
lief state. We say that an action a is executable in a be-
lief state S if it is executable in every state belonging to
S. Let a, = [a1,...,a,] be a sequence of actions and
oy = [al,...,ai]A:
o Ifn=0then ®([],5) = S;
e If n > 0 then

o if ®(ap—1,5) = L or a, is not executable in

®(ay—1,5), then ®(ay,, S) = L;
o if ®(aru_1,5) # L and a,, is executable in ® (v, _1, S)
then ® (v, S) = {®(an,s’) | s’ € ®(an-1,5)}.

The initial state of the world I is a belief state and is rep-
resented by a formula. In our investigation, we consider
I to be a conjunction of literals, oneof statements and or
statements—where a oneof statement (or statement) repre-
sents an exclusive-or (resp. logical or) of its components. By
St we denote the set of all states satisfying I. Typically, the
goal description G can contain literals and or statements.

A sequence of actions & = [aq,...,a,] is a solution of

Pif @(m Sr) satisfies G. In this paper, we will denote with
C, the set of conditional effects of an action a.

Approximation-Based Planning

The approach to approximation-based planning adopted in
CPA relies on the 0-approximation semantics for reasoning
about effects of actions in presence of incomplete informa-
tion about the initial state (Son and Baral 2001). Intuitively,
the approach (i) replaces a belief state by a partial state,
which is a set of fluent literals; and (i) specifies how to com-
pute the successor partial state, i.e., the result of executing an
action in a given partial state. This is appealing for confor-
mant planning, since it lowers the complexity of conformant
planning (Baral, Kreinovich, and Trejo 2000). It is charac-
terized by a function (® 4) that maps an action and a partial
state to a partial state. Given a partial state J, the possible
effects of a in § are given by

pea(d) ={l| (¥ — 1) € Co, N6 =0} 2

The successor partial state from the execution of a in d is
defined by ® 4(a, ) = (6Ue(a, d))\pe, (9) if a is executable
in §; and ®4(a,0) = L, otherwise. This function is then

—~

extended to define ® 4, similarly to <i>, to reason about plans.

Observe that ® 4 coincides with ® under complete infor-
mation, i.e., ®4(a,s) = P(a,s) for every state s. How-
ever, ® 4 can be incomplete. For example, given a planning
problem P; with the set of propositions { f, g, h}, the ini-
tial state I = (J, the set of actions O = {a: f Ag — h,a:
fAmg—h,b:g— f,b:—g— f}, and the goal G = {h}.
D4 (b,{0}) = {0}, i.e., D4 will answer the query whether

26

f will be true after the execution of b in the initial state with
‘No’ whereas ® will say ‘Yes.’

To guarantee completeness, CPA exploits the complete-
ness condition in (Son and Tu 2006) to identify a minimal
set of initial partial states and searches for solutions in the
space of sets of partial states, called cs-states.

DNF and CNF

The DNF planner uses DNF-formulae to represent belief
states and employs the transition function ® pyr in its pro-
gression. ® py relies on an algorithm for splitting a partial
state ¢ into a minimal set of partial states A (with respect to
set inclusions among members) such that every precondition
of a given action a is either true or false in each member of
A. The details of ® pxr can be found in (To, Pontelli, and
Son 2009).

For example,given the planning problem P; described in
the previous subsection, the behavior of ®pyp is as fol-
lows. The initial belief state will be represented by the DNF-
formula A = {@}. ®pnp (b, A) will begin with the realiza-
tion that A will need to be split into A; = {{g},{—g}}.
The result of executing b in A will then be Ay =
{{f,9},{f,—g}} Executing a in Ay does not require any
splitting and results in As = {{f, g, h},{f, g, h}}.

Observe that the initial belief state consists of eight states
(all possible states of the problem) and the DNF-formula af-
ter the splitting for b contains only two elements. This repre-
sentation allows for an efficient computation of the succes-
sor belief state—i.e., ® pyr(a, A) can be computed in poly-
nomial time in the size of A, under a reasonable assump-
tion that the number of effects of each action is bounded, for
every action a and DNF-formula A. Tt is worth to men-
tion that the belief state representation of DNF is similar
to that of CPA. In this sense, the key distinction between
DNF and CPA lies in that DNF computes the set of partial
states needed for guaranteeing the completeness of the plan-
ner only when needed, while CPA computes it before the
search process starts. Both planners, however, still suffer
from the possible huge size of the initial state.

To address the problem of the size of the initial state faced
by DNF and CPA, the CNF planner uses CNF-formulae, rep-
resented as a set of clauses and minimal with respect to sub-
sumption and unit propagation, to represent belief states.
The transition function ® oyr of CNF is similar to ® pyr,
in that it also relies on an algorithm for splitting a formula
© into a set of CNF-formulae, enb(a, ¢), such that the ef-
fects of the action a on ¢ can be determined. For example,
® onr behaves almost as @ pyp with respect to the prob-
lem P, as the initial state ) is splitted into two clauses {g}
and {—g}, enabling the execution of b to achieve f from the
initial state. In this sense, the key difference between DNF
and CNF lies in their use of different belief state represen-
tations. While the computation of ® oy is more complex
than that of ®pyp, its representation of the initial state is
more compact. This representation pays off when the size
of the initial state is huge. This representation also allows
for the application of a new technique, called relaxation of
oneof statements, which allows CNF to solve all instances
of the coin-domain. To the best of our knowledge, CNF



is the only planner can deal with the instances coins-21
to coins—30, whose initial belief states contain more than
106 states. Precise definition of ® oy can be found in (To,
Son, and Pontelli 2010).

Analysis and Simplifications

The analysis and simplification techniques implemented in
the three planners help simplify the planning instances by re-
ducing the number of actions and propositions. It also con-
tains, for each representation, a technique that reduces the
size of the initial cs-state (or belief state). These techniques
briefly discussed next.

Basic Simplifications: We consider two well-known basic
steps: forward reachability and goal relevance. Several
planners implement these two steps.

Forward reachability is used to detect: (i) propositions
whose truth value cannot be affected by the actions in the
problem specification (w.r.t. the initial state); (ii) actions
whose execution cannot be triggered w.r.t. the given initial
state. This process can be modeled as a fixpoint computa-
tion. Goal relevance proceeds in a similar manner, by de-
tecting actions that are relevant to the achievement of the
goal.

Combination of oneof Statements: oneof statements are
used to specify the uncertainty about some propositions
and/or mutual exclusion between propositions. The number
of the oneof statements and their size (the size of an oneof
statements is the number of its elements) determine the size
of the initial cs-state.

The idea of the combination of oneof statements tech-
nique is based on the non-interaction between actions and
propositions in different sub-problems of a conformant plan-
ning problem. This idea is best illustrated with a simple ex-
ample.

Let us consider the planning problem P, with the
set of propositions {f,g,h,p,i,j}, the initial state I =
{oneof(f,g), oneof(h,p), i, —j}, the set of actions O =
{a:f—i cth—j b:g—i d:p—3j }, and the
goal G = i A j. Here, a causes i to be true if f is true; ¢
causes j to be true if & is true; b causes ¢ to be true if g is
true; and d causes j to be true if p is true.

It is easy to see that the sequence o« = [a,b,c,d] is a
solution of P,. Furthermore, the search should start from
the cs-state consisting of the four states:

{fv_‘gahv_'p7_'ia_‘j} {_‘fvg7ha_‘pa_‘i7_'j}

{fv _‘ga_'hapv _'iv_‘j} {_'f7gv_'h7p7 _‘iv_'j}
Let P} be the problem obtained from P, by replacing I with
I', where I' = {oneof(f A h,g A p),—i,—j}.

We can see that « is also a solution of Pj. Further-
more, each solution of Pj is a solution of P,. This
transformation is interesting since the initial cs-state now
consists only of two states: {f,—g,h,—p,—i,—j} and
{=f,g,—h,p,—i,—j}. In other words, the number of states
in the initial belief state (or initial cs-state) that a confor-
mant planner has to consider in P is 2, while it is 4 in P.
This transformation is possible because the set of actions
that are “activated” by f and g is disjoint from the set of ac-
tions that are “activated” by h and p, i.e., preact({f, g}) N

27

preact({h,p}) = 0 where preact(d) we denote the set of
actions depending on J.

Using this technique, many oneof statements can be
combined into one, yielding several order of magnitudes re-
duction in the size of the initial cs-state.

Goal Splitting: The key idea is that if a problem P contains a
subgoal whose truth value cannot be negated by the actions
used to reach the other goals, then the problem can be de-
composed into smaller problems with different goals, whose
solutions can be combined to create a solution of the origi-
nal problem. This technique can be seen as a variation of the
goal ordering technique in (Hoffmann, Porteous, and Sebas-
tia 2004) and relies on the notion of dependence proposed in
(Son and Tu 2006).

Relaxation of oneof Statements: In contrast to the combi-
nation of oneof statements technique, a relaxation of an
oneof statement increases the number of the states in the
initial belief state. More precisely, the relaxation of a oneof
statement oneof (ly, . .., l;) replaces it with an or statement
or(ly,...,l;). Conditions for the soundness of the trans-
formation have been identified. This technique also relies
on the non-interaction between actions and propositions in
these oneof statements. Let us illustrate this with a simple
example.

Let consider the planning problem Ps; with the
set of propositions {f,g,i,j}, the initial state
I = {oneof(f,g),—i,—j}, the set of actions

O ={a:fAi—4b:gN—j—3j } and the goal
G = i A j. Any solution of the problem Pj with the same
set of propositions, the initial state I’ = {ox(f, g), 7, —j},
O, and G will be a solution of Ps.

Observe that this technique increases the number of states
in the initial belief state. However, the size of the CNF for-
mula representing the relaxation will be smaller compared to
the size of the CNF formula representing the original belief
state.

Heuristics in CPA

The heuristics used in CPA are the combination of the fol-
lowing well-known heuristics.

e The cardinality heuristic: we prefer cs-states that have
a smaller cardinality. In other words, h.qrqa(X) = |X
where X is a cs-state. Note that we use this heuristic in
a forward fashion, and hence, is different from its use in
(Bertoli, Cimatti, and Roveri 2001; Bryce and Kambham-
pati 2004). The intuition behinds this is that planning with
complete information is “easier” than planning with in-
complete information, and a lower cardinality implies a
lower degree of uncertainty.

o The number of satisfied subgoals: denoted by hgoq1(X).

CPA uses the combination: hes(X) =
(heard(X), hgoat (X)) with lexicographic ordering. It
gives preference to the cs-states with a lower degree of
uncertainty, i.e., cs-states that have a smaller cardinality.
If the cardinality of two cs-states does not differ, then the
heuristics gives preference to those cs-states that maximize
the number of satisfied subgoal.



Heuristics in DNF and CNF

Given a DNF-state A\, the heuristic function used in DNF is
a combination of the following three values (along with a
lexicographic ordering):

® Ngoqi(A): the number of subgoals satisfied by A.
® heara(A): the cardinality of A.
o hais(A): the square distance of A to the goal, defined by

hais(8) = Ssea (|Gl = hgoar(6))”
where G is the goal of the problem.

For a CNF-state ¢, encoded by a set of clauses, the heuris-
tic function of CNF is a combination of the number of sat-
isfied subgoals in ¢ (hgoq(¢)) and the size of ¢, defined as
the sum of the sizes of non-unit clauses in ¢ (hg;..(©)).

System Organization

The proposed systems are organized as in Fig. 1. The first
component is a front-end, that acts as a static analyzer. The
static analyzer is in charge of applying several simplifica-
tions and optimizations to the input problem specification—
initially expressed in PDDL. The simplified specification
(expressed either in PDDL or in the action language AL—
the native input format of CPA, DNF, and CNF) produced
by the static analyzer is then fed to the actual planner. The
separation of the two stages allows us to investigate the use
of different planners applied to the same simplified problem

specification.

Syntactic Anal yzer Pl anners

forward reachability
/
goal splitting
o

I nput Sinplified

probl em

PDDL AL N\ b

representation

Figure 1: Overall System

The implementation of the static analyzer makes use of
the PDDL parser originally developed for these systems; the
parser has been modified to enable the construction of a Pro-
log representation of the problem specification. This Pro-
log representation is used as the input to the static analyzer,
implemented in Prolog. The analyzer implements the basic
simplifications, the oneof-combination/relaxation, and the
goal-splitting algorithm. Its output is a sequence of simpli-
fied problems in AL, which serve as input to these planners.
An option is also available to produce PDDL output from the
static analyzer—that can be fed, for example, to a different
planner.

CPA makes use of h., in combination with a best-first
search algorithm. CPA employs an explicit representation
of cs-states as sets of sets of propositions, and they make
use of the C++ standard library std for sets manipulation.
To reduce the space consumption, a partial state is created
only once and it is shared by all cs-states containing it.

28

Discussion and Conclusion

We presented the main techniques implemented in the three
conformant planners CPA, DNF, and CNF. Experimentally,
these planners are competitive with state-of-the-art confor-
mant planners in several benchmark domains. CNF scales
better than others in some benchmarks but the overhead in
computing the successor belief state slows it down in small
instances.

The development of these planners highlights the fact that
the representation of belief states can significantly impact
the performance of a planner. Some simplification tech-
niques are applicable to a wide range of representations,
while others are specific to certain representations. For ex-
ample, oneof-combination is better for DNF-representation
and the oneof-relaxation is better for CNF-representation.

So far, the proposed planners do focus only on the size of
the initial belief state. For scalability, the problems related to
the number of actions in the planning problems will need to
be addressed as well. We believe that heuristics should pro-
vide a solution to this problem and this will be a focus of our
future work. Furthermore, our study reveals that there seems
to be no “one size fits all” representation for all planning do-
mains. As such, identifying the most useful representation
given a planning problem will be another interesting work
that we plan to explore in the near future.

References

Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Computa-
tional complexity of planning and approximate planning in
the presence of incompleteness. AlJ 122:241-267.

Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuristic
search + symbolic model checking = efficient conformant
planning. In IJCAI, 467-472. Morgan Kaufmann.

Bryce, D., and Kambhampati, S. 2004. Heuristic Guidance
Measures for Conformant Planning. In ICAPS 2004, 365—
375. AAAL

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. J. Artif. Intell. Res. 22:215-278.
Son, T. C., and Baral, C. 2001. Formalizing sensing actions
- a transition function based approach. AIJ 125(1-2):19-91.
Son, T. C., and Tu, P. H. 2006. On the Completeness of
Approximation Based Reasoning and Planning in Action
Theories with Incomplete Information. In KR, 481-491.
Son, T. C.; Tu, P. H.; Gelfond, M.; and Morales, R. 2005.
Conformant Planning for Domains with Constraints — A
New Approach. In AAAT 1211-1216.

To, S. T.; Pontelli, E.; and Son, T. C. 2009. A confor-
mant planner with explicit disjunctive representation of be-
lief states. In ICAPS. AAAL

To, S. T.; Son, T. C.; and Pontelli, E. 2010. A New Ap-
proach to Conformant Planning using CNF. In ICAPS. To
Appear.



