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Abstract

In this short overview paper, we describe our vision for com-
bining task and motion planning and present a historical per-
spective to show which parts of it have already become re-
ality. Robots do not have to plan only once but repeatedly.
Replanning from scratch is often very time consuming. In-
cremental heuristic search addresses this issue by reusing in-
formation from previous searches to find solutions to series
of similar search tasks often much faster than is possible by
solving each search task from scratch. Incremental heuris-
tic search has mostly been used for path planning in the past
but we argue that it applies to many layers of robot architec-
tures, in particular task and motion planning, which might al-
low one to design very homogeneous robot architectures with
clean interfaces between the layers.

Introduction
Mobile robot architectures typically consist of several lay-
ers which suitably partition system functionality, see Figure
1. For example, office delivery robots have to determine
in which order to visit offices, plan paths to those offices,
follow those paths reliably and avoid static and dynamic
obstacles in the process. Task planning determines where
the robot should move next, while motion planning moves
the robot there. The conventional wisdom in the 1990s was
the following: For complex motions, such as parallel park-
ing, one uses a full-scale motion planner. For simple mo-
tions, such as obstacle avoidance, one uses a combination of
path planning and navigation (that is, path following). Path
planning searches a low-dimensional configuration space
(for example, given by the coordinates of the robot) with
medium time lookaheads to determine the nominal trajec-
tory of the robot, often ignoring obstacles and the physi-
cal capabilities of the robot (such as dynamic constraints).
Navigation searches a high-dimensional configuration space
(for example, given by the coordinates of the robot, its ori-
entation and its velocity) with smaller time lookaheads to
follow the nominal trajectory as closely as possible, taking
obstacles and the physical capabilities of the robot into ac-
count. The conventional wisdom in the 1990s was that task
planning is best implemented with symbolic planning meth-
ods, path planning is best implemented with search meth-
ods, and navigation is best implemented with reactive nav-
igation methods. Xavier (Simmons et al. 1997), for ex-
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Figure 1: Simple Robot Architecture

ample, was an indoor mobile robot that operated from De-
cember 1995 for more than four years. It accepted about
40,000 requests from the world wide web to visit different
offices, traveling about 240 kilometers in the process (Sim-
mons et al. 2000). Task planning used Prodigy (Carbonell
et al. 1991) to process incoming navigation requests, prior-
itize them, and identify when different navigation requests
could be achieved opportunistically. Path planning used a
version of the heuristic search method A* (Hart, Nilsson,
and Raphael 1968) to determine efficient routes based on a
topological map augmented with rough metric information,
taking into account that some paths can be followed more
easily than others. Navigation used the Lane-Curvature
Method (Ko and Simmons 1998) to find highly traversable
lanes in the desired direction and the Curvature-Velocity
Method (Simmons 1996) to switch between lanes and avoid
dynamic obstacles. Servo control then controlled the motors
appropriately. This description is somewhat simplified since
both path planning and navigation used partially observable
Markov decision problem-based robot navigation (Koenig
and Simmons 1998) to deal with actuator and sensor uncer-
tainty and the resulting position uncertainty. In general,the
lower layers of a robot architecture typically have to pro-
cess lots of low-level (raw) data under extreme time pres-
sure to solve simple planning problems with high frequency
using an extremely local view, while higher layers typically
have to process a smaller amount of aggregated high-level
(abstract) data under less time pressure to solve more diffi-
cult planning tasks with lower frequency using a more global
view.

We argue in this overview paper that developments in
the past decade have made it possible to implement not
only path planning but also task planning, motion plan-
ning for complex motions and navigation with versions of
A*, except possibly for the runtime requirements. Robots
need to plan on-line to be responsive to the current naviga-



tion scenario. They do not have to plan only once but re-
peatedly because their actuation and sensing are imperfect,
their knowledge of the domain is imperfect or the domain
changes dynamically. For example, task planning has to re-
plan when a new task is introduced. Path planning has to
replan when an unmodeled obstacle blocks the current path
to the existing destination or task planning changes the desti-
nation. Navigation has to replan when the robot needs to cir-
cumnavigate an unmodeled obstacle or when path planning
changes the path. Task planning solves difficult and thus
time-consuming planning tasks. Navigation solves simpler
and thus less time-consuming planning tasks but needs to be
run with high frequency. It thus needs to be extremely fast
to provide safe motion. Incremental heuristic search speeds
up repeated planning by reusing information from previous
searches to find solutions to series of similar search tasks of-
ten much faster than is possible by solving each search task
from scratch. Incremental heuristic search has mostly been
used for path planning in the past but we argue that it applies
to task planning, motion planning for complex motions and
navigation as well, which might allow one to design very
homogeneous robot architectures with clean interfaces be-
tween the layers.

Incremental Heuristic Search

Incremental heuristic search (Koenig et al. 2004) combines
incremental and heuristic search. Incremental search reuses
information from previous searches to find solutions to se-
ries of similar search tasks potentially much faster than is
possible by solving each search task from scratch, while
heuristic search uses heuristic values that approximate the
goal distances to focus the search and solve search problems
potentially much faster than uninformed search methods. In-
cremental and heuristic search have been studied indepen-
dently since the late 1960s. Incremental heuristic search
started with (focussed) D* (Stentz 1995) in the mid-1990s.
Three different classes of incremental heuristic search meth-
ods are known, all of which are incremental versions of A*:

• The first class restarts A* at the point where its current
search deviates from the previous one. Examples are Dif-
ferential A* (Trovato and Dorst 2002) and FSA* (Sun and
Koenig 2007), which are very simple incremental heuris-
tic search methods.

• The second class updates the heuristic values from the
previous search during the current search to make them
more informed. Examples are Adaptive A* (Koenig and
Likhachev 2006), which uses a principle described in the
context of Hierarchical A* (Holte et al. 1996), and its gen-
eralization Generalized Adaptive A* (Sun, Koenig, and
Yeoh 2008).

• The third class updates the g-values from the previous
search during the current search to correct them when nec-
essary, which can be interpreted as transforming the A*
search tree from the previous search into the A* search
tree for the current search. Examples are LPA* (Koenig,
Likhachev, and Furcy 2004), D* and D* Lite (Koenig and
Likhachev 2002), which is easier to understand than D*.

All these incremental heuristic search methods differ from
other replanning methods (such as planning by analogy)
in that the resulting path length can be as good as that
achieved by planning from scratch (if desired). Thus, the
path length does not deteriorate with the number of replan-
ning episodes. Extensions include search with limited re-
sources (such as time and energy constraints) (Mills-Tettey,
Stentz, and Dias 2006), search in the presence of position
uncertainty (Gonzalez and Stentz 2008), minimax search
(Likhachev and Koenig 2003), anytime search (Likhachev
et al. 2008) and anyangle search (Ferguson and Stentz 2006;
Nash, Koenig, and Likhachev 2009). Incremental heuristic
search methods (most notably D*, D* Lite and their exten-
sions) have been used as part of a variety of robotics appli-
cations by a number of research groups. They are typically
applied to path planning in the context of moving a robot
to given goal coordinates in initially unknown terrain. Plan-
ning with the freespace assumption assumes that the terrain
is clear unless it knows otherwise. It always plans a short-
est path to the given goal coordinates and replans whenever
it detects that its current path is no longer optimal (for ex-
ample, because it is blocked by an obstacle), resulting in an
effective and efficient robot navigation method in initially
unknown terrain (Koenig, Smirnov, and Tovey 2003). We
now explain how incremental heuristic search applies to task
and motion planning.

Task Planning
Task planning searches large state spaces with large time
lookaheads to determine where the robot should move next.
Symbolic planners are often based on heuristic search.
Heuristic search-based planners were introduced in (McDer-
mott 1996) and (Bonet, Loerincs, and Geffner 1997) in the
mid-1990 and have become very popular since then. HSP
2.0 (Bonet and Geffner 2000), for example, uses weighted
A* (Pohl 1970) with inadmissible heuristic values to per-
form forward searches in the space of world states to find
a path from the current state to a given goal state. This is
possible despite the large state spaces due to the specific
heuristic values used. Since task planners are often based
on heuristic search, incremental heuristic search can speed
them up in two orthogonal ways:

• Incremental heuristic search can speed up solving single
heuristic search-based planning tasks. Heuristic search-
based planners spend about eighty percent of their plan-
ning time on calculating the heuristic values. For exam-
ple, HSP 2.0 calculates each heuristic value by solving a
relaxed planning problem with a dynamic programming
method similar to value iteration. PINCH (Liu, Koenig,
and Furcy 2002) orders the value updates and reuses in-
formation from the calculation of previous heuristic val-
ues to speed up the planning time of HSP 2.0 by up to
eighty percent in several domains.

• Incremental heuristic search can also speed up solving
series of similar heuristic search-based planning tasks.
SHERPA (Koenig, Furcy, and Bauer 2002) uses LPA* to
speed up solving series of similar planning tasks with HSP
2.0 with admissible heuristic values by up to eighty per-
cent in several domains.



Motion Planning
Motion planning searches high-dimensional configuration
spaces (for example, given by the coordinates of the robot,
its orientation and its velocity) with medium time looka-
heads to determine a trajectory of the robot, taking obstacles
and the physical capabilities of the robot into account. In-
cremental heuristic search in the 2000s is probably more im-
portant for motion planning than path planning. Path plan-
ning is often fast because it searches a low-dimensional and
thus small configuration space, while the robot is often slow
not only because it takes time to figure out how to follow
the path as closely as possible but mostly because the path
does not take the physical capabilities of the robot into ac-
count and thus cannot be traversed fast. On the other hand,
motion planning is often slow because it searches a high-
dimensional and thus large configuration space, while the
robot is often fast because the motions take the physical ca-
pabilities of the robot into account. and thus can be executed
directly. Thus, the time pressure is much more severe for
motion planning than path planning.

Complex Motions
For complex motions, such as parallel parking, one might
use a full-scale motion planner, even though this is slow.
Current motion planners are often based on roadmaps
(Kavraki et al. 1996; LaValle and Kuffner 2001). To
demonstrate how incremental heuristic search applies to mo-
tion planning, we have applied it to motion planning with
cell decompositions. Uniform discretizations of the con-
figuration space can prevent motion planning from finding
a plan if they are too coarse-grained and result in large
state spaces that cannot be searched efficiently if they are
too fine-grained. Thus, researchers discretize the configu-
ration space dynamically using nonuniform discretizations.
An example is the parti-game method (Moore and Atkeson
1995), a reinforcement-learning method that starts with a
coarse discretization and refines it during execution by split-
ting cells only when and where it is needed (for example,
around obstacles). The parti-game method executes a mini-
max search after each such split. Minimax LPA* (Likhachev
and Koenig 2003) is probably the first incremental heuristic
search method for search in non-deterministic state spaces.
It is an extension of LPA* that speeds up repeated mini-
max searches and results in an efficient implementation of
the parti-game method, which can be an order of magnitude
faster than the standard implementation with uninformed
search from scratch.

Simple Motions
For simple motions, such as obstacle avoidance, one of-
ten uses a combination of path planning and navigation to
speed up motion planning. Path planning searches a low-
dimensional configuration space (for example, given by the
coordinates of the robot) with medium time lookaheads to
determine the nominal trajectory of the robot, often ignoring
obstacles and the physical capabilities of the robot. Thus,
path planning runs sufficiently fast if implemented with
search methods. Navigation searches a high-dimensional
configuration space (for example, given by the coordinates

Figure 2: Advantage of Search

Figure 3: Planning on Demand

of the robot, its orientation and its velocity) with smaller
time lookaheads to follow the nominal trajectory as closely
as possible, taking obstacles and the physical capabilities of
the robot into account. Conventional wisdom in the 1990
was that navigation does not run sufficiently fast if imple-
mented with search methods and thus is best implemented
with greedy reactive navigation methods, including potential
field methods (Koditschek 1989), often implemented as mo-
tor schemata grouped into behaviors (Arkin 1989). Reactive
navigation is fast but the robot can get stuck in local minima
of the potential function, such as in box canyons or in front
of small openings. These local minima can be avoided ei-
ther by sequencing behaviors or by adjusting parameters of
the only behavior, either before execution (programming) or
during execution (learning). Programming is time intensive
and the programmer needs to know the terrain characteris-
tics approximately, otherwise navigation performance can
be poor. Learning needs time, both to detect when the pa-
rameters should be changed and to determine how to change
them (for example, by experimentation), which can degrade
the navigation performance. Search can result in a better
navigation performance than reactive navigation in the pres-
ence of local minima, as shown in Figure 2 (Ranganathan
and Koenig 2003) for reactive navigation with learning mo-
mentum (Lee and Arkin 2001) (left) and search (right) in a
MissionLab simulation (Georgia Tech Mobile Robot Labo-
ratory 2002) in initially unknown terrain with a box canyon.
However, search then needs to be run with high frequency. It
thus needs to run extremely fast to provide safe motion. In-
cremental search can be used to speed up path planning but
it was unclear whether it can speed up path planning suffi-
ciently to replace reactive navigation.

Early Proof of Concept: Planning on Demand
We built the Planning on Demand (POD) robot architec-
ture (Ranganathan and Koenig 2003) in 2003, a very sim-
ple prototype system to demonstrate that incremental heuris-



tic search can be fast enough to build robot architectures
that give path planning progressively greater control of a
robot if reactive navigation continues to fail, until path plan-
ning controls the robot directly. The POD robot architec-
ture contains a reactive layer (that implements reactive nav-
igation), degenerated sequencing layer (that determines the
navigation mode) and powerful deliberative layer (that im-
plements the path planner). The reactive and sequencing
layers run continuously but the deliberative layer runs only
in certain navigation modes. The reactive layer uses a re-
active controller with only one motor schema (whose pa-
rameters are not modified during execution) to move the
robot to given goal coordinates. This motor schema imple-
ments a behavior that consists of two primitive behaviors,
namely moving to the destination and avoiding obstacles.
The deliberative layer obtains sensor readings from the on-
board sensors, updates a short-term map (occupancy grid)
and then uses D* Lite for planning with the freespace as-
sumption. The sequencing layer monitors the progress of
the robot and determines the navigation mode in a princi-
pled way. The amount of path planning and how closely
the path planner controls the robot depend on the difficulty
that reactive navigation has with the terrain. The sequenc-
ing layer uses reactive navigation as much as possible be-
cause of its speed (Mode 1). However, reactive navigation
can get stuck in box canyons or in front of small open-
ings. If the robot does not make progress toward the des-
tination, then the sequencing layer activates the path plan-
ner, which sets a waypoint for reactive navigation to achieve
(Mode 2), as had been done before (Wettergreen et al. 2001;
Urmson, Simmons, and Nesnas 2003). Reactive navigation
can still get stuck if the reactive layer is unable to reach the
waypoint. If the robot does not make progress toward the
next waypoint, the sequencing layer bypasses reactive navi-
gation completely and lets the path planner control the robot
directly for a short time (Mode 3), which is rather unusual
in robotics and a first step towards integrating planning more
tightly into the control-loop of mobile robots. Figure 3 (Ran-
ganathan and Koenig 2003) shows an example of corridor
navigation in initially unknown terrain, including passing
through doors. The robot started in Mode 1, entered Mode
2 at point A, Mode 3 at point C, Mode 2 at point D, Mode 1
at point F, Mode 2 at point G and finally Mode 1 at point H.
The other points mark additional positions at which the path
planner was invoked in Mode 2 to set a waypoint.

Current State of the Art
The POD robot architecture was a radical departure from the
thinking that controlling robots directly should be avoided
(Gat 1998) and that plans should provide advice but not
commands (Agre and Chapman 1990), which was based on
experience with classical planning technology that was too
slow for researchers to integrate it successfully into the con-
trol loop of robots (Fikes and Nilsson 1971). The POD robot
architecture was tested only on a slowly moving indoor robot
and the results thus do not transfer to fast moving robots,
such as unmanned ground vehicles. However, incremental
heuristic search has recently been used for motion planning
in fielded systems on unmanned ground vehicles. Boss, the

winning entry into the Urban Challenge by Carnegie Mellon
University (that the author was not involved with), used a
hybrid of the two approaches to motion planning presented
earlier. Boss used Anytime D* (Likhachev et al. 2008),
an extension of D* Lite, on a multi-resolution lattice to
plan complex motions in real time (Ferguson, Howard, and
Likhachev 2008b), such as the traversal of parking lots and
complex u-turns, taking obstacles and the physical capabil-
ities of the robot into account. Incremental heuristic search
ran at a frequency of about 1-5 Hertz. Boss still used an im-
poverished form of reactive navigation (Ferguson, Howard,
and Likhachev 2008a), implemented as a local planner that
rolled out several possible short trajectories and picked the
one that followed the motion produced by the motion plan-
ner as closely as possible. Reactive navigation ran at a
frequency of 10 Hertz. As envisioned by us, incremental
heuristic search allowed the motion planner to take obsta-
cles and the physical capabilities of the robot into account
in real-time, which also simplifies reactive navigation. Both
motion planning and reactive navigation consider trajecto-
ries in a very similar format, which results in robust naviga-
tion and avoids situations where the robot gets stuck due to
a mismatch between motion planning and navigation. Thus,
the vision that incremental search enables one to use search
in most layers of robot architectures has partially become
true already.

Future Work
Incremental search benefits from two trends, namely that
computers get faster and that better sensors and more sophis-
ticated map building techniques create accurate maps fast.
However, some technical advances to incremental heuristic
search are needed to make all of the envisioned robot ar-
chitecture a reality. For task planning, incremental heuristic
search needs to deal better with innadmissible heuristic val-
ues. A starting point exists (Likhachev and Koenig 2005) but
there is a tension between incremental heuristic search (that
benefits from keeping as much information in memory as
possible to speed up future searches) and weighted A* (that
reduces the amount of information in memory). For task and
motion planning, incremental heuristic search needs to deal
better with actuator and sensor uncertainty and the resulting
position uncertainty. Starting points exist (Likhachev and
Koenig 2003; Gonzalez and Stentz 2008) but incremental
heuristic search cannot yet handle general totally or partially
observable Markov decision problems. The next step then is
to build the complete robot architecture based on ideas from
hierarchical search.
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